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Finally, to analyze rocking curves we want analyti-
cal expressions for the total derivatives dI,/dé and
dl,/dé. Consider I,=|s,,|*. Let a superscript asterisk
denote the complex conjugate. Then if A= (ay), we
have

dr, d
d—;=@|8n|2=2 Re (—05’1"1),
where
dsu_ g~ g dsu day_os,, ds
dé k=1 ,=16ak, de

since s = a,, is the only element of A which depends
on 6. Since

as . . ds
a—:= 2rit exp (wist) ¥ and 3g = 8 0 0,
we compute immediately
dl, o5y, ds )
_—r 2 Xk
de (as dg 1t
—21rtg cos 6 .
=% <£) sin (7rrt)
gr r
i t
X [cos (wrt)—M].
rt

By an exactly similar computation, we find
dl, (mgs*)__%
s do de’

The correctness of these expressions may be easily

DYNAMICAL TRANSMISSION ELECTRON DIFFRACTION

checked directly from (B3); it is much easier in this
case to compute the total derivatives in this manner.
When the dimension of the matrices exceeds two,
however, it is in general impossible to perform the
necessary analytical diagonalization of the structure
matrix to obtain expressions for I(#8), so if the deriva-
tive is to be computed at all, it must ordinarily be
approximated numerically by a difference quotient.
In contrast to this, our method allows such derivatives
to be calculated directly for matrices of any size.
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Abstract

The piezoelectric, elastic, photoelastic and Brillouin tensors
for the point groups 5(Cs), 5(Sy0), 10(Cs,), 10m2(Ds,),
52(Ds), 5m(Cs,), 52m(Ds,), 235(I) and (2/ m)35(1,) have
been calculated and are tabulated here.

0108-7673/90/090772-05$03.00

Introduction

Although periodic crystals with pentagonal symmetry in
two dimensions and icosahedral symmetry in three
dimensions cannot exist, there are both theoretical (Levine
& Steinhandt, 1984) and experimental (Shechtmen, Blech,

© 1990 International Union of Crystallography
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Table 1. The piezoelectric tensors for point groups with fivefold rotation axes
Cs D;
. . dys  dgs dyy .
. - dis —dy . —dys
dy, dy, dy; . . 3
(4) (1
Cs, S Csn Dsy Dsg 1 I,
. . . dys
. . dis . 0)
d3l d3l d33 .
(2)
Table 2. The photoelastic and elastic tensors for point groups with fivefold rotation axes
Photoelastic Elastic
CS Pll PlZ Pl3 . P16
PlZ Pn P|3 B _Pw
Sio Py, Py, Py . .
. . . Py Pys
Csh . . —Pys Py . . Ch, G, G
—P Py - - i(Pn—Plz) G, Cn Cis
(8) 1 Chn Gy .
: . . Cus .
DS Pll PIZ Pl3 . CM ! .
Py, Py, Pys . Q(Cll_clz)
Cs, Py Py P33 . (5
. . . Py .
Dsy . P, . .
. . i( PI 1= PIZ)
Dsy, (6)
1 Py Py Py, Cy Cn Gy
Plz Pll Plz Clz Cll ClZ
P12 P12 Pll 1 . ClZ ClZ Cll 1 .
I . . . i(Pu_Plz) . . . . . E(Cu'clz) 1 .
. . 2P = Py3) 1 . . i(cu'clz) . .
. i(Pn"Pn) . i(Cu‘Clz)

‘@

Gratias & Cahn, 1984) reasons to believe that quasicrystals
with such symmetries can and do exist. For studying the
physical properties of quasicrystals which depend on their
symmetries, it is necessary to calculate the property tensors
for the quasicrystals’ symmetry groups. The Raman and
hyper-Raman tensors for groups with fivefold rotation axes
have been given by Brandmiiller & Claus (19884, b), and
the mathematical form of the electric susceptibility and
piezoelectric tensors have also been discussed in their paper.

Here, with the employment of group theoretical methods,
the piezoelectric, elastic and photoelastic tensors corre-
sponding to the point groups 5(Cs), 5(S)0), 10(Csa),
10m2(Ds,), 52(Ds), 5m(Cs,), 52m(Ds4), 235(I) and
(2/m)35(1I,,) are calculated. On the basis of these results,
the Brillouin tensors with such symmetries are also derived.

Calculation and results

The number, n, of independent non-zero coefficients of
piezoelectric, elastic and photoelastic tensors are deter-
mined for each point group with fivefold rotation axes using
the well known formula

1
n =N§X(R)X,~(R), (1

e

where N is the total number of group elements in the given
point groups, x;(R) is the character of the totally symmetric
irreducible representation, y(R) is the character of the
reducible representation for each tensor mentioned above.

Once the number of non-vanishing independent tensor
components have been determined, the tensor components
can be identified by the ordinary method (Nye, 1985). Here,
the method of direct inspection (Nye, 1985) cannot be used.
We have calculated the tensor components by solving the
simultaneous equations which arise when imposing the
condition that the tensors are invariant under the elements
of the point groups. For the sake of brevity, we omit the
somewhat lengthy calculations and simply present the
results in Tables 1 and 2. Brandmiiller & Claus (19884, b)
have calculated the irreducible tensor elements for all point
groups including those with fivefold axes. With a little
calculation we can see that our results coincide with theirs.
From Table 2, oneé can see that there are only two indepen-
dent elastic and photoelastic constants for icosahedral point
groups, fewer than in any of the 32 crystallographic groups.

The Christoffel matrices of the point groups with fivefold
axes can be calculated and the velocities of sound waves
are obtained by solving the secular equations (Auld, 1973).
Based upon these results, the Brillouin tensors for point
groups with fivefold rotation axes can be derived following
Cummius & Schoen (1972). The results are presented in
Table 3.
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Table 3. Brillouin tensors for point groups with fivefold rotation axes

Cs S Csn
1. x phonongq=(1,0,0)
PUZ=C1|
u=(1,0,0) (L)
53Pu _S(Z)Pm

2 2
—&oPyg &Py

P02= Ces
u(0,1,0) (Ty)
5(2)P16 *‘-‘%Pss

2 2
€0Pss  —£0Py6

pv*=Cyy
u=(0,0,1) (Ty)
PM
€28, R
Py Pys

2. y phonon q=(0,1,0)
Pvz= Cn
u=(0,1,0) (L)
E(z)Plz Sgple
Etz)ch 8(2)Pu
€§P31
PUZ= Caa
u=(0,0,1) (T,

—Pys

£0Ee| - . Py
—Pys Py
PUZ=C66
u=(1,0,0) (Ty)
P P

2
g5 Pes —Pis

3. z phonon q=(0,0, 1)

PUZ: Css
u=(0,0,1) (L)
€§PlS
E(Z)Pu
5§P33
PUZ_—' Cas
u=(1,0,0) (T)
Py
Eoe| - . Pys
Puy Py
Pvz= Cas
u=(0,1,0) (Ty)
—Pys
€ofe Pay

—Pys Py

2
ee Py

DS CSv DSd DSI:

1. x phonon q=(1,0,0)

PUZ=C|1
u=(1,0,0) (L)
eéP“
2
&Py,
sf,P“
pv? = Ces
u=(0,1,0) (T,)
e%P“
eﬁPé(,
PUZ=C44
u=(0,0,1) (T3)
Pay
£o€e
Py

. y phonon q=(0, 1,0)

01’2=Cu
u=(0,1,0) (L)
E(2)1"'12
E(Z;Pu
53"31
PUZ‘_‘ Cas

u=(0,0,1) (T,)

Eo€e|- . Pay
Py

PUZ = Ces

u=(1,0,0) (T3)
Pge

512) Pes

. z phonon q=(0,0, 1)

PUZ:C:»J
u=(0,0,1) (L)
E%P,;
E(Z)Pu
53P33
PUZ:CM
u=(1,0,0) (Ty)
Pyy
o€ | -
Pys
PUZ=C44

u=(0,1,0) (T7)

Eo€e|- - Pag
Pas
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Table 3 (cont.)

Cs S Csn
4. xxy phonon q=(1, %1, 0)/v2
pvz=(C"—C|2)/2
u=(1,£1,0)/v2 (L)

Ye3(Pyy + Py £2P)) +e5Pgg

+e5Pgs 365(Pyy + Py F2Pyg)
2551’31
I”-’2=Cu
u=(1,%,0/v2 (T}
P66 _Pl6

2
go|—Pis —Pes

po’=Cyy
u=(0,0,1) (T3}

FPys+ Pyy
EeEo

£ Pyyt Pys

:FP45+P“ :EPM+P4S

5. xxz phonon q=(1,0, £1)/v2
p0* = (Caq+ Ceg)/2
u=(0,1,0) (T)

£5Pi6 £3Pss  FegePys
€5Pss _5(21P16 +£0€,Pas

FeoboPys L EL9Pas

6. y+z phonon q=(0, 1, £1)/v2
P07 = (Cas+ Ce)/2
u=(1,0,0) (T)

Ds; Cs, Dsy; D,
4. xty phonon q=(1, =1, 0)/v2
PUZ=(C11_C12)/2
u=(1,%1,0)/v2 (L)

1e5(Py + Pyy) +£5Pgg

+e5Pgs 365(Pyy+ Pyy) .
255P3|

PUZ=C|1
u=(1,%1,0)/v2 (T)

Pes
5% . —Pg
PUZ=C44
u=(0,0,1) (7T)

Pas

Eefo +Py

Py +£Py,

5. x =z phonon q=(1,0,£1)/v2
pv? = (Caat Ceg)/2
u=(0,1,0) (T)

£0Pgs
E(Z)P“ . EI-N

teg€.Pay

6. y+z phonon q=(0, 1, 1)/v2
pv?=(Cas+ Ceg)/2
u=(1,0,0) (7)

E(Z)Pw €5Pss  %60EPas S(Z)Psb 808Py
£5Pss —e5Pis  tege.Pas €5Pss
te0€.Pay  TEGEPss +£0€,Pas
1 I
1. x phonon q=(1,0, 0)
'va=C” pv?=(Cy, = Cy2)/2 pv’=(Cy —Cpa)/2
u=(1,0,0) (L) u=(0,1,0) (Ty) u=(0,0,1) (Ty)
I Py . R
£ P, . es|Ps . . sg .
Py, P
2. xy phonon q=(1,1,0)/v2
PUZ=C|| PUZ=(C||_C12)/2 PUZ=(C|1_C12)/2
u=(1,1,0/v2 (L) u=(1,-1,0/v2 (T)) u=(0,0,1) (T3)
2|Put Pz 2P . Pes . Pgg
£ 2 o
S| 2P PutPa . el . -P Al Pe
2P, Pes Py
3. xyz phonon q=(1,1,1)/3
pr’=Cy, pv’=(Cy - Cy)/2 pv?=(Cy; - Cy,)/2
u=(1,1,1)/¥3 (L) u=(-1,1,0)/v2 (T)) u=(1,1,-2)/v6 (Ty)
e Py +2P; 2P 2P e 2P . —Pes e 2Pss  2Pss — Py
—| 2P, P,,+2P 2P, — -2P, —| 2P, 2P, —P,
7 66 11 12 66 % () EWAA ki 66 66
2P 2P Py +2P, =Py P —Pss —Pss 2Py
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Discussion

The significance of the results in Table 2 goes beyond
the mere purpose of providing the elastic and photo-
elastic tensors for the given groups. From Table 2,
any polar time-reversal invariant tensor of rank 4, such
as the second electro-optic or electrostriction tensor
can be easily obtained by considering its intrinsic
symmetry.

We expect the Raman and Brillouin scattering technique
to be useful in the study of quasicrystals. But, so far as we
know, there is no experimental work involving Raman and
Brillouin scattering by quasicrystals (Brandmiiller, 1989,
private communication).
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Notes and News
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The Dorothy Hodgkin Prize of the British Crystallographic
Association

In celebration of Professor Dorothy Hodgkin’s 80th birth-
day, the British Crystallographic Association (BCA) is
pleased to announce the creation of the Dorothy Hodgkin
Prize, in recognition of her great contribution to crystal-
lography and to science in general.

Nominations for this prize are welcomed from any part
of the crystallographic community and the award will be
made at the time of the BCA Spring Meeting. Periodically
the award will recognize specifically the achievements of
young crystallographers.

The BCA is counting on the generosity of Dorothy’s
many friends and colleagues to make the prize financially
worthwhile as well as prestigious. All donors will be named
within the prize scroll and it is hoped that you will wish to
be associated with this splendid and permanent tribute to
Dorothy’s scientific achievements. In order that the first
award may be closely associated with Dorothy’s 80th birth-
day, we wish to make the first presentation of the prize at
the Sheffield Meeting of the BCA in March 1991. It is
expected that Dorothy herself will be there to present the
award at this time.

Please forward your contributions as early as possible to
the Treasurer, Dr Ian Langford, Department of Physics,
The University, Birmingham B15 2TT, England. (Cheques
payable to ‘The Dorothy Hodgkin Prize/BCA’.) Further
details concerning the nominations for the award will
appear in subsequent BCA Newsletters this year, or can be
obtained from the BCA Secretary, Dr Judith Howard.



